TD 5: Les complexes

Forme algébrique, conjugué, module -

Exercice 1. Mettre sous forme algébrique $z = \frac{1}{i}$, $u = (1+i)^5$, $v = -\frac{2}{1-i\sqrt{3}}$ et $w = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$.

Exercice 2. Soit $z \in \mathbb{C}$. Montrer que

$$|z-i| = |z+i| \iff z \in \mathbb{R}$$

Exercice 3. Soit $z \in \mathbb{C} \setminus \{-i\}$. Démontrer

$$\frac{z-i}{1-iz} \in \mathbb{R} \Longleftrightarrow |z| = 1$$

Exercice 4. Décrire géométriquement l'ensemble $A = \{z \in \mathbb{C} \mid |z| = |1 - z|\}$. (On explicitera les parties réelles et imaginaires des nombres complexes appartenant à cet ensemble.)

Exercice 5. Montrer *l'identité du parallélogramme* :

$$\forall u, v \in \mathbb{C}$$
 $|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2)$

et l'interpréter géométriquement.

Exercice 6. Soit $z_1,...z_n \in \mathbb{C}$. Montrer que

$$\left| \sum_{k=1}^{n} z_k \right|^2 = \sum_{k=1}^{n} |z_k|^2 + 2 \sum_{1 \le j < k \le n} \text{Re}(z_j \bar{z}_k)$$

Exercice 7. On note $f(z) = \frac{z+i}{z-i}$. Montrer que pour tout $z \in \mathbb{C} \setminus \{i\}$, on a : $\overline{f(z)} = \frac{1}{f(\overline{z})}$.

Exercice 8. Déterminer les applications $f: \mathbb{C} \to \mathbb{C}$ telles que

$$\begin{cases} \forall x \in \mathbb{R} & f(x) = x \\ \forall (z, z') \in \mathbb{C}^2 & \begin{cases} f(z + z') = f(z) + f(z') \\ f(zz') = f(z)f(z') \end{cases} \end{cases}$$

- Forme trigonométrique et trigonométrie -

Exercice 9. Mettre sous forme trigonométrique les complexes suivants :

1)
$$z_1 = 1 - \sqrt{2}$$

2)
$$z_2 = -i$$

3)
$$z_3 = 1 - i$$

4)
$$z_4 = \frac{3}{1-i}$$

5)
$$z_5 = (1+i)^5$$

6)
$$z_6 = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$$

7)
$$z_7 = e^{ia} + e^{ib} \text{ avec } a, b \in \mathbb{R}.$$

Exercice 10. On pose $a = e^{i\frac{\pi}{3}}$, $b = e^{i\frac{\pi}{4}}$ et $Z = \frac{a}{b}$. Déterminer la forme algébrique de Z. En déduire $\cos\frac{\pi}{12}$ et $\sin\frac{\pi}{12}$.

Exercice 11. 1) Linéariser l'expression $\sin^5(x)$, pour tout $x \in \mathbb{R}$.

- 2) Linéariser l'expression $\cos^2(x)\sin^3(x)$, pour tout $x \in \mathbb{R}$.
- 3) Exprimer $\sin(5t)$ comme une fonction polynômiale de $\sin(t)$.

Exercice 12. Faire le dernier exercice du TD4 (tour de magie trigonométrique).

Exercice 13. Soit $\alpha, \beta \in \mathbb{R}$. Montrer que

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

Résoudre pour $x \in \mathbb{R}$ l'équation

$$\sin x + \sin(2x) + \sin(3x) + \sin(4x) = 0$$

Exercice 14. Soit $n \in \mathbb{N}$ et $a, b \in \mathbb{R}$. Calculer

$$C = \sum_{k=0}^{n} \cos(a+kb)$$

$$S = \sum_{k=0}^{n} \sin(a+kb)$$

Exercice 15 (*). **Oral centrale** Soit $z \in \mathbb{C}$ tel que |z| = 1. Montrer que

$$|1+z| > 1$$
 ou $|z^2+1| > 1$

Racines et résolution d'équations —

Exercice 16. Déterminer les racines carrées des complexes suivants :

1)
$$z_1 = -2$$

3)
$$z_3 = 1 + i$$

5)
$$z_5 = 8 - 6i$$

2)
$$z_2 = i$$

4)
$$z_4 = 3 + 4i$$

6)
$$z_6 = \frac{-3i}{1 - i\sqrt{3}}$$

Exercice 17. 1) Déterminer les racines cubiques de 8.

- 2) Déterminer les racines cinquièmes de 32i.
- 3) Déterminer les racines cubiques de $4\sqrt{2}(1+i)$.
- 4) Déterminer les racines huitièmes de l'unité.

Exercice 18. Résoudre dans \mathbb{C} les équations suivantes :

1)
$$z^2 - (5+i)z + 8 + i = 0$$

2)
$$z^2 - 4(1-i)z + 2(4-i) = 0$$

3)
$$z^3 - (3+4i)z^2 - 4(1-3i)z + 12 = 0$$
 (on cherchera une solution réelle en premier lieu).

4)
$$z^4 - z^2 + 1 = 0$$

Exercice 19. Soit $n \in \mathbb{N}^*$. Soit $a_0, a_1, \dots, a_n \in \mathbb{R}$. On définit pour tout $z \in \mathbb{C}$,

$$P(z) = \sum_{k=0}^{n} a_k z^k$$

- 1) Montrer que pour tout $z \in \mathbb{C}$, on a $P(\bar{z}) = \overline{P(z)}$.
- 2) Soit $\alpha \in \mathbb{C}$. Démontrer

$$P(\alpha) = 0 \iff P(\bar{\alpha}) = 0$$

Exercice 20 (Relations coefficients-racines). Résoudre dans $\mathbb C$ les systèmes suivants :

a)
$$\begin{cases} u+v = 2 \\ uv = -4 \end{cases}$$
 b)
$$\begin{cases} u+v = 4 \\ 1/u+1/v = 4 \end{cases}$$
 c)
$$\begin{cases} u+v = 4 \\ u^2+v^2 = 2 \end{cases}$$

Exercice 21. Soit $n \ge 3$, ω une racine n-ième de l'unité et $p \in \mathbb{Z}$. Calculer $\sum_{k=0}^{n-1} \omega^{kp}$.

Exercice 22. Résoudre dans \mathbb{C} :

- 1) $z^3 = \overline{z}$
- 2) $e^z = 1 i\sqrt{3}$
- 3) $z^n = (z-1)^n$ avec $n \in \mathbb{N}^*$.

Exercice 23 (Autour du complexe j). On pose $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

- 1) Mettre j sous forme trigonométrique. En déduire que $j^2 = \overline{j}$ et que $\overline{j}^2 = j$.
- 2) Montrer que j et \bar{j} sont les racines du polynôme $1 + z + z^2$.
- 3) Factoriser le polynôme $z^3 1$.

Exercice 24. Soit $j = e^{\frac{2i\pi}{3}}$. On définit :

$$A = \sum_{\substack{k=0 \\ k \equiv 0 \, [3]}}^{n} \binom{n}{k} \qquad B = \sum_{\substack{k=0 \\ k \equiv 1 \, [3]}}^{n} \binom{n}{k} \qquad C = \sum_{\substack{k=0 \\ k \equiv 2 \, [3]}}^{n} \binom{n}{k}$$

- 1) Calculer A+B+C, $A+jB+j^2C$, $A+j^2B+jC$.
- 2) En déduire la valeur de *A*.

Géométrie complexe —

Exercice 25. On considère les points A, B, C affixes respectives a = 1, b = 1 + 2i et $c = 1 + \sqrt{3} + i$. Déterminer la nature du triangle ABC.

Exercice 26. Dans le plan complexe, déterminer l'ensemble des points M d'affixe z tels que

- 1) |z+3|=5
- 2) $z + \bar{z} = |z|^2$
- 3) Les points d'affixe 1, z et z^2 soient alignés.
- 4) Les points d'affixe z, z^2 et z^3 forment un triangle rectangle dont M est l'angle droit.